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LETTER TO THE EDITOR 

On the connection between directed percolation and directed 
polymers 

N I Lebedevt and Y-C B a n g  
lnstitut de Physique TMorique, Perolles, Univenit6 de Fribourg. CH-1700, Switzerland 

Received 14 November 1994 

Abstract. We consider the scaling behaviour of the directed paths of minimum energy on a 
latiice to each bond of which energy 0 or 1 is mdomly assigned. In 1 + 1 dimensions, it 
is shown by numerical msfer-mavix calculations that in a l l  the regions below the directed- 
percolation tkshold, these paths still scale with the directed-percolation exponent. At the same 
time, degeneracy of these paths at, and below, the threshold is found to be very different. The 
problem of stability of the directed-percolation ground state and the case when the energy on 
each bond can take randomly q =- 2 different values am also considered. 

The directed-polymer problem has recently attracted considerable attention [1,2]. In 
continuous formulation, the problem is described by the imaginary-time Schrodinger 
equation 

aP 
at 

T- =,TZA.p+ V(x,t)(p 

where V(x, t )  is a random potential and T is a constant (usually interpreted as temperature). 
In lattice formulation, rp(x, 2 )  can be considered as the sum over all~directed paths on a 
lattice (figure l), to each bond of which an energy V ( x ,  t )  is randomly assigned. Each path 
is weighted with a corresponding Boltzmann factor exp(-V/T), where V is the s u m  of 
V ( x ,  t )  along a given path x ( 0 .  Consequently, to find the ground state (the T + 0 limit) 
for the directed polymer, one should find the best energy paths on the lattice. Usually, 
the random energy V(x, t )  is assumed to have a continuous distribution. .The case of a 
discretevalued V(x, t )  has been studied much less, although it deserves special attention 
from the point of view of possible applications of the directed-polymer problem. Indeed, it 
was mentioned [31, that among other applications, equation (1) can be treated as a problem 
of the variation of population of some' living beings, due to variations of life conditions 
V(x, t ) .  It is also natural to try to use this equation to describe the diffusion-reaction 
processes, like the,so-called Schlogl's~first model [4]. ,In this case, to each reaction event, 
say to duplication or death of an individual, we assign a suitable value of the energy V(x, t ) .  
However, in this case, both ~ ( x ,  t )  and V(x, t )  should be discrete. It is important to verify 
whether ,this dis2retenes.s will alter the directed-polymer universality class or not. 

In order to test this, we study in this paper the scaling properties of the, best energy 
paths on a lattice with discrete-valued random energies V ( x .  t )  in 1 + 1 dimensions by 
the numerical transfer-matrix method. 'In the simplest case, the energies V ( x ,  t )  can ta&e 
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Figure 1. 'square 
performed. Energy 0 or 1 is F d o m l y  assigned to each bond. 

i n ' ~ l e  diagona'direction; on which the numerical MavMnt was 

only two values, say 0 and I. For one special concentration p = pc  of the bonds with 
energy 0, which is the concentration of the directed-percolation threshold, the answer 
be understood without any calculations. Indeed, at the directed-percolation threshold, the 
directed-percolation path will be the hest energy path and, therefore, the exponent for 
the average transverse displacement of the best energy path will be that of the directed 
percolation [5]. This result indeed corresponds to the known answer for the Schlogl's 
model at c r i t id ty  and differs from the usual answer for the direct&-polymer problem with 
cbntinuous random energy distribution'[l,Z]. Recently,, it was shown [5] that, above the 
threshold concentration, the usual directed-polymer exponent is restored. We investigate 
here @e region below the threshold. We consider also the question of stability of the 
computed ground state and the case when the V ( x ,  t )  can take 4 =- 2 different values. 

In order to'test our program, we investigate first the best,energy paths at the directed- 
percolation threshold, i.e. p = pc. (For the random bond problem, it is known that 
p .  = 0.6445 [SI). The typical shape of the best energy-paths cluster (which is actually 
the directed-percolation cluster) is shown in figure 2(u). The cluster looks similar to that in 
[7]. (The only difference is that the 'death branches', i.e. those paths which did not reach 
the upper bound of the figure, are not shown in OUI case). The sc4ing of the position of 
the path furthest from the origin is shown in figure 3. In our calculations, fhe perpendicular 
size of'he system was chosen to be L = 1000, and.the data was averaged over ZOO0 or 
more realizations of V(x ,  t). The exponent x '  = 0.63 & 0.01 corresponds to the known 
value' x 0.63 [6]1 We have also investigated here the scaling behaviour of the path 
closest to the origin and the scaling behaviour of the 'width' and the 'centre position' of 
the path's cluster-i.e. the scaling of the dzyerence between the positions of the leftn~& 
and the rightmost paths and the middlepoint of these values. ,We observe that all these 
quantities scale with the same exponent, which also coincides, within our accuracy, with 
the directed-percolation exponent x N 0.63. 

Figure 3 also shows the scaling behaviour at p = pc  of another important quantity, 
which' characterizes the degeneracy of the best energy-paths cluster. It is the number of 
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Fwre 2. "Ypd shape of the juster of best energy paths: (a) at the ~rcola.!ion threshold; (b) 
below the percolation threshold. Dashes on~the right-hand side of the figure mark the values of 
L'at which the best energy path has to go on bonds with unit energy. 

endpoints n(t)  of the paths of the cluster  for^ fixed longitudinal distance t. The n(t)  at 
p = pc  scales as n(z) - f a ,  with a IT 0.48 + 0.01. The exponent a can be easily 
related to the exponent U ,  characterizing the mass N of a finite cluster below percolation: 
N - (pc - p)"/" 161. Indeed, the infinite directed-percolation cluster at p = pc can be 
obtained as the limiting .object of finite clusters as p approaches pc from below. Thus, 
N - t'+rr should be proportional to (~I I )~+~, ,  where 511 - (pc - p)-* is the longitudinal size 
of a finite. cluster. So for &e exponent a, we should have a = I/(uq) --1 rz 0.47 [6], in 
good agreement with our simulations.' hoceediig further, following the lines of arguments 
of [6], we can also relate the exponent a to the fractal dimension of the directed-percolation 
cluster. However, the question of the fractal dimension of the percolation cluster is actually 
highly non-trivial. Indeed, it was shown recently [7] that, apart from the arguments given 
in [6], there are also two different ways to calculate the fractal dimension, which lead to 
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Figure 3. Line 1 shows the scaling of the position of the path, furthest away from the 
origin at p = pc, with fitted exponent x = 0.63 i 0.01; Line 2 shows the scaling of the 
number of endpoints of the best energy pathr for fixed longitudinal distance I at p = pc. with 
a = 0.48 & 0.01. 

,. , 

different results. At the same time, the careful box-counting method [7] gives a value which 
does not correspond to either of them. We will not touch the complicated question of the 
fractal dimension in this letter. 

Now we describe our results for *e best energy paths below the percolation threshold. 
A typical shape of these paths below the percolation is presented in figure 2(b). The scaling 
of the position of the path furthest &m' the origin for p = 0.35 is shown in figure 4. For 
comparison; we show on the same figure the test curve for the usual case of continuously- 
dishibuted random energy V ( x ,  t )  (obtained from the same program). The difference in the 
exponents is small but evident (x = 0.62 f 0.01 and 0.67 * 0.01, respectively). We have 
also found that the position of the path closest to the origin and the transverse deviation 
weighted with the function rp(x, f), which counts the total number of the best energy paths 
coming to a given point (x ,  t ) ,  scale with the s&e exponent x = 0.62 f 0.01 (although 
in these cases we have some crossover at small t). So, withm our accuracy, the scaling of 
the position of the best energy paths for p < pc  is still the same as that at the percolation 
threshold (,y N 0.63). We have tested that this scaling holds in all of the region p c pc, 
at least for p greater than 0.02. This gives us strong indication that x 2.0.63 is indeed 
the true asymptotic scaling law, and not a long intermediate regime due to the presence of 
some small parameter in the problem. At the same time, conbary to the caSe of p = pc.  the 
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number of endpoints of the best energy paths n(f),for p e pc  does not grow for t -+ 00. 

The asymptotic number n(t + CO) grows for both limiting cases p -+ 0 and p -+ pc. 
. .  

, .  1 

Figure 4. Line I shows the scaling of the poaoon of h e  path. funhest sany from the origin at 
p = 0.35, with x = 0.62-rO.01. Linc 2, shows for compxison. h e  test curve forthe continuous 
dislnbution of [he random potential. uhich gives exponent x = 0.61 50.01. 

The scaling laws described above can be supported by some qualitative arguments. 
In [5 ] ,  it was shown that the exponent x =~0.63 at p = pc  is, in some'sense, disorder 
independent: i.e. it is not changed if one assigns additional random energies to the bonds 
of the percolation cluster. However, the 'wrong' bonds, with energy unity connecting finite 
clusters of bonds with ,zero energy b low pc,  can also be considered as a kind of disorder 
on the infinite percolation cluster. So, in this sense, one may expect the exponent x N 0.63 
to still hold at p e pc in correspondence with our numerical findings. A finite value 
for n(t -+ m) below pc can be explained as follows. Below pc, the number of 'wrong' 
bonds, which each path should pass, is proportion& to the longitudinal distance t. Owing 
to fluctuations of concentration of the 'wrong' bonds, the typical energy difference between 
two paths increases with distance as~the square root oft .  So, one can expect that the ground 
state is globally unique, i.e. different best energy~paths actually differ only locally (such 
loops are indeed seen' in figure 2(b)). Thus, n(f -+ &) is finite,~although it does hoi equal 
unity. With a decrease in concentratiop p .  one has more "d more rkgions with bonds, with 
energy .of unity only. Of course, inside such regions the best energy path is not uniquely 
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defined, so the degeneracy should be'kestored for p + 0. Thus, 'the growth of n(t 4 00) 
for p + 0 that we have found is also'reasonable. 

Up to now we have investigated only the properties of the best energy paths on a 
lattice, which corresponds to the ground state of the directed-polymer problem (1). The 
next ,important question is whether the directed-percolation exponent x N 0.63 still holds 
at finite temperature T for the directed-polymer problem with discretevalued disorder, or, 
at any T # 0, the usual directed polymer exponent is restored. Due to crossovers, which 
are stronger at finite T, and the small exponent difference (x N 0.63 for the directed- 
percolation ground state and x = f for the directed-polymer problem), it is not easy to find 
the answer to this question. However, one can investigate the difference in the exponents 
of the fluctuation of free energy, which may be much higher due to the contribution of 
entropy. Indeed, the entropy contribution, at least at p = pc, should scale as t'/* [51. We 
have searched for this contribution at, T # 0 for p < pF,  but have not found it. The free- 
energy fluctuation always scales approximately as it should be for the conventional directed 
polymer: AF - tc, 3 = 0.33 j, 0.'05 ( 3  is exactly 4 for the usual directed polymer). 
Although the uncertainty in the exponent is now much larger than in the calculations for the 
ground-state properties, the possibility of 5 = can be definitely ruled out. We consider 
this fact as an indication that the directed-percolation ground state at p < pc  is unstable. 

The last question which we shall address in this letter is the scaling of the best energy 
paths for a random potential taking q 2 different values (with equal probabilities). 
Evidently, for large enough q. one should reproduce the result for continuous energy 
distribution. Indeed, for q 12, the scaling dependence for the position of the path 
furthest from the origin is indistinguishable from the &t curve for continuous distribution. 
For q = 3, we still have the directed-percolation exponent. However, due to the small 
exponent difference, it is difficult to determine precisely the transition value of q. Most 
probably it equals 5 or 6. 

In summary, we have investigated the ground-state properties (the limit of zero 
temperature T) for the special case of the directed-polymer problem when the random 
potential takes only two discrete values. In the entire region below the directed-percolation 
threshold ( p  < pc), the ground state retains a scaling exponent which is identical, with 
numerical accuracy, to the directed-percolation exponent (x = 0.63). Although we have 
found some indication that this directed percolation ground state is unstable below .the 
percolation threshold, the question of stability needs further detailed study. 

The authors are indebted to X Bagnoud, A Chiolero and E Jeckelmann for their help in 
performing the numerical calculations, and to S Feng for useful discussions. One of us (NIL) 
wishes to thank the Institute of Theoretical Physics, University of Fribourg for hospitality 
during his visit.. 
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